Heliyon (Nov 2023)

Shengmai injection inhibits palmitic acid-induced myocardial cell inflammatory death via regulating NLRP3 inflammasome activation

  • Gang Yin,
  • Zi-qing Hu,
  • Jing-ya Li,
  • Zhong-yu Wen,
  • Yong-qin Du,
  • Peng Zhou,
  • Liang Wang

Journal volume & issue
Vol. 9, no. 11
p. e21522

Abstract

Read online

Objective: To determine the protective effect of Shengmai injection (SMI) on myocardial injury in diabetic rats and its mechanism based on NLRP3/Caspase1 signaling pathway. Materials and methods: Rat H9c2 cardiomyocytes were cultured in vitro, and the cell survival rate of different concentrations of palmitate acid (PA) and different concentrations of SMI were detected by CCK-8. The myocardial injury cell model was induced with PA, treated with SMI, and combined with NLRP3 specific inhibitor (MCC950) to interfere with the high-fat-induced rat H9c2 myocardial cell injury model. The cell changes were observed by Hoechst/PI staining and the expression levels of MDA, SOD, and ROS in each group were detected. The protein and gene changes of the NLRP3/Caspase-1 signaling pathway were detected by Western blot and RT-qPCR, respectively. Results: 200 μmol/L of PA were selected to induce the myocardial injury cell model and 25 μL/mL of SMI was selected for intervention concentration. SMI could significantly reduce MDA expression, increase SOD level, and decrease ROS production. SMI could decrease the gene expression levels of NLRP3, ASC, Caspase-1, and GSDMD, and the protein expressions of NLRP3, ASC, Cleaved Caspase-1, GSDMD, and GSDMD-N. Conclusion: SMI can inhibit the high-fat-induced activation of the NLRP3/Caspase-1 signaling pathway, intervene in cardiomyocyte pyroptosis, and prevent diabetic cardiomyopathy.

Keywords