BMC Biotechnology (Jul 2019)

Provision of carbon skeleton for lipid synthesis from the breakdown of intracellular protein and soluble sugar in Phaeodactylum tricornutum under high CO2

  • Aiyou Huang,
  • Songcui Wu,
  • Wenhui Gu,
  • Yuanxiang Li,
  • Xiujun Xie,
  • Guangce Wang

DOI
https://doi.org/10.1186/s12896-019-0544-4
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background Increasing CO2 emissions have resulted in ocean acidification, affecting marine plant photosynthesis and changing the nutrient composition of marine ecosystems. The physiological and biochemical processes of marine phytoplankton in response to ocean acidification have been reported, but have been mainly focused on growth and photosynthetic physiology. To acquire a thorough knowledge of the molecular regulation mechanisms, model species with clear genetic background should be selected for systematic study. Phaeodactylum tricornutum is a pennate diatom with the characteristics of small genome size, short generation cycle, and easy to transform. Furthermore, the genome of P. tricornutum has been completely sequenced. Results and discussion In this study, P. tricornutum was cultured at high and normal CO2 concentrations. Cell composition changes during culture time were investigated. The 13C isotope tracing technique was used to determine fractional labeling enrichments for the main cellular components. The results suggested that when lipid content increased significantly under high CO2 conditions, total protein and soluble sugar contents decreased. The 13C labeling experiment indicated that the C skeleton needed for fatty acid C chain elongation in lipid synthesis under high CO2 conditions is not mainly derived from NaHCO3 (carbon fixed by photosynthesis). Conclusion This study indicated that breakdown of intracellular protein and soluble sugar provide C skeleton for lipid synthesis under high CO2 concentration.

Keywords