Nano Convergence (Dec 2019)
NO2 sensing properties of WO3-decorated In2O3 nanorods and In2O3-decorated WO3 nanorods
Abstract
Abstract In2O3 nanoparticle (NP)-decorated WO3 nanorods (NRs) were prepared using sol–gel and hydrothermal methods. The In2O3 NRs and WO3 NPs were crystalline. WO3 NP-decorated In2O3 NRs were also prepared using thermal evaporation and hydrothermal methods. The NO2 sensing performance of the In2O3 NP-decorated WO3 NR sensor toward NO2 was compared to that of the WO3 NP-decorated In2O3 NR sensor. The former showed a high response to NO2 due to a significant reduction of the conduction channel width upon exposure to NO2. In contrast, the latter showed a far less pronounced response due to limited reduction of the conduction channel width upon exposure to NO2. When the sensors were exposed to a reducing gas instead of an oxidizing gas (NO2), the situation was reversed, i.e., the WO3 NP-decorated In2O3 NR exhibited a stronger response to the reducing gas than the In2O3 NP-decorated WO3 NR sensor. Thus, a semiconducting metal oxide (SMO) with a smaller work function must be used as the decorating material in decorated heterostructured SMO sensors for detection of oxidizing gases. The In2O3 NP-decorated WO3 NR sensor showed higher selectivity for NO2 compared to other gases, including reducing gases and other oxidizing gases, as well as showed high sensitivity to NO2.
Keywords