Advances in Mechanical Engineering (Nov 2019)
Enhanced heat transfer in working fluids using nanoparticles with ramped wall temperature: Applications in engine oil
Abstract
The purpose of this article is to investigate the flow of Maxwell fluid with nanoparticles, that is, molybdenum disulfide and graphene with ramped temperature condition at the boundary, and engine oil is considered as base fluid. Furthermore, molybdenum disulfide and graphene nanoparticles are uniformly distributed in the base fluid. The problem is modeled in terms of partial differential equations with physical initial and boundary conditions. To make the system of governing equations dimensionless, we introduced some suitable non-dimensional variables. The obtained dimensionless system of equations is solved using the Laplace transform technique. From graphical analysis, it can be noticed that the velocity is high with isothermal wall temperature and lower for ramped wall temperature. These solutions are verified by comparing with the well-known published results. In addition, the physics of all parameters of interest is discussed through graphs. The mathematical expressions for skin friction and Nusselt number are mentioned and the obtained results are presented in tabular form. Finally, the effect of molybdenum disulfide and graphene nanoparticles is briefly discussed for the flow and heat profiles for Maxwell nanofluid.