Journal of Experimental & Clinical Cancer Research (Oct 2017)

Upregulation of DARS2 by HBV promotes hepatocarcinogenesis through the miR-30e-5p/MAPK/NFAT5 pathway

  • Xian Qin,
  • Changsheng Li,
  • Tao Guo,
  • Jing Chen,
  • Hai-Tao Wang,
  • Yi-Tao Wang,
  • Yu-Sha Xiao,
  • Jun Li,
  • Pengpeng Liu,
  • Zhi-Su Liu,
  • Quan-Yan Liu

DOI
https://doi.org/10.1186/s13046-017-0618-x
Journal volume & issue
Vol. 36, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Infection with the hepatitis B virus (HBV) is closely associated with the development of hepatocellular carcinoma (HCC). The osmoregulatory transcription factor nuclear factor of activated T-cells 5 (NFAT5) has been shown to play an important role in the development of many types of human cancers. The role of NFAT5 in HBV-associated HCC has never previously been investigated. Methods We compared expression profiles of NFAT5, DARS2 and miR-30e-5p in HCC samples, adjacent nontumor tissues and different hepatoma cell lines by quantitative real-time polymerase chain reaction and /or Western blot. Clinical data of HCC patients for up to 80 months were analyzed. The regulatory mechanisms upstream and convergent downstream pathways of NFAT5 in HBV-associated HCC were investigated by ChIP-seq, MSP, luciferase report assay and bioinformation anaylsis. Results We first found that higher levels of NFAT5 expression predict a good prognosis, suggesting that NFAT5 is a potential tumor-suppressing gene, and verified that NFAT5 promotes hepatoma cell apoptosis and inhibits cell growth in vitro. Second, our results showed that HBV could suppress NFAT5 expression by inducing hypermethylation of the AP1-binding site in the NFAT5 promoter in hepatoma cells. In addition, HBV also inhibited NFAT5 through miR-30e-5p targeted MAP4K4, and miR-30e-5p in turn inhibited HBV replication. Finally, we demonstrated that NFAT5 suppressed DARS2 by directly binding to its promoter. DARS2 was identified as an HCC oncogene that promotes HCC cell cycle progression and inhibits HCC cell apoptosis. Conclusion HBV suppresses NFAT5 through the miR-30e-5p/mitogen-activated protein kinase (MAPK) signaling pathway upstream of NFAT5 and inhibits the NFAT5 to enhance HCC tumorigenesis via the downstream target genes of DARS2.

Keywords