Department of Molecular Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
Ryuichi Nishii
Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
Department of Molecular Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
Keiichi Kawai
Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-1192, Japan
Single-photon emission computed tomography (SPECT) imaging using intravenous radioactive ligand administration to indirectly evaluate the time-dependent effect of intranasal drugs with poor blood-brain barrier permeability on brain drug distributions in mice was evaluated. The biodistribution was examined using domperidone, a dopamine D2 receptor ligand, as the model drug, with intranasal administration at 0, 15, or 30 min before intravenous [123I]IBZM administration. In the striatum, [123I]IBZM accumulation was significantly lower after intranasal (IN) domperidone administration than in controls 15 min after intravenous [125I]IBZM administration. [123I]IBZM SPECT was acquired with intravenous (IV) or IN domperidone administration 15 min before [123I]IBZM, and time–activity curves were obtained. In the striatum, [123I]IBZM accumulation was clearly lower in the IN group than in the control and IV groups. Time–activity curves showed no significant difference between the control and IV groups in the striatum, and values were significantly lowest during the first 10 min in the IN group. In the IN group, binding potential and % of receptor occupancy were significantly lower and higher, respectively, compared to the control and IV groups. Thus, brain-migrated domperidone inhibited D2R binding of [123I]IBZM. SPECT imaging is suitable for research to indirectly explore nose-to-brain drug delivery and locus-specific biological distribution.