Applied Sciences (May 2024)
Matching of Water Breakthroughs in a Low-Resistivity Oil Reservoir Using Permeability Anisotropy
Abstract
In a mature middle and lower Gharif field in Oman, uncertainties surrounding initial water saturation and early water breakthroughs of unknown sources and paths suggest the presence of significant bypassed oil. In order to determine the areas with remaining oil, petrophysical and logging data of seven wells were processed using Techlog software and imported into Petrel software for modelling and simulation. Porosity was calculated using the Electric Propagation Time log and was utilized to evaluate the presence of oil, particularly in the upper tight zone of the formation. Despite the low resistivity readings in the highly porous layers, caused by good network connectivity and high formation water salinity, the resistivity contrast was sufficient to differentiate them from the oil zone. However, the calculated water saturation (Sw) in the tight top oil zone was high, consistent with the observed water production in the field. To improve the match between production data and simulation results, sensitivity analyses were conducted on various permeability anisotropy and relative permeability values within the model. The analyses showed that core-derived permeability anisotropy (vertical to horizontal ratio of 1:1) yielded a better history match for water production compared to the conventionally used value of 1:10. Water saturation maps were generated at the start and the end of production to highlight saturation distribution within the reservoirs. The maps revealed that in the lower porous part, the oil was fully depleted around the wells but remained trapped in the undrilled areas.
Keywords