Water (Aug 2019)

Deep Groundwater as an Alternative Source of Water in the Ogaden Jesoma Sandstone Aquifers of Somali Region, Ethiopia

  • Samuel Godfrey,
  • Getachew Hailemichael,
  • Charles Serele

DOI
https://doi.org/10.3390/w11081735
Journal volume & issue
Vol. 11, no. 8
p. 1735

Abstract

Read online

Between 2015 and 2018, the Horn of Africa was affected by a series of climatic-induced events, namely El Nino, La Nina, and the Indian Ocean Dipole. These events modified the variability of rainfall patterns and resulted in extended periods of low rainfall, low recharge, and high evapotranspiration. That situation prompted humanitarian water professionals to finance the transportation of water from selected locations with high groundwater potential through water trucks to areas facing groundwater depletion and drought. To mitigate this, UNICEF identified alternative water supplies by exploring sustainable deeper groundwater sources. This paper describes a three-phase methodology of deep groundwater development of wells in the Ogaden Jesoma sandstone aquifers of the Somali region of the Horn of Africa, to a depth of 600 m below ground level. The methodology included the development of groundwater suitability maps using geological and remote sensing data, hydrogeological ground truthing of the maps, and then test drilling at the selected locations. The results concluded that the deep sandstone aquifer of Jesoma can provide fresh water with yields of 15 L/s to the local population of the Somali region. The study provided insights into deep groundwater identification and development as well as adaptive deep borehole drilling as a source for climate-resilient water supplies.

Keywords