Energies (Mar 2023)
A Dynamic Heat Pump Model for Indoor Climate Control of a Broiler House
Abstract
Environment control systems in broiler houses utilize non-renewable electricity and fuels as energy sources, contributing to the increase in greenhouse gases, while not providing optimal conditions. The heat pump (HP) is an energy-efficient technology that can continuously regulate the indoor temperature and relative humidity by combining different operation modes (heating, cooling, and dehumidifying). The current study presents an analytical numerical model developed in Simulink, capable of simulating the thermal loads of a broiler house and the dynamic operation of three heat pumps to cover its needs. Outdoor climatic conditions and broilers’ heat production are used as inputs, while all the heat exchange mechanisms with the external environment are considered. The study investigates the energy use and performance of each HP mode under different environmental conditions. A total of 7 different production periods (PPs) are simulated for a 10,000-broiler house in northern Greece, showing total energy consumption of 18.5 kWh/m2, 43.4 kWh/m2, and 58.7 kWh/m2 for heating, cooling, and dehumidifying, respectively. The seasonal coefficient of performance (SCOP) reaches above 3.1 and 4.8 for heating and dehumidifying, respectively, while the seasonal energy efficiency ratio (SEER) for cooling is above 3.7. Finally, focusing on the two warmer periods, a comparison between cooling with and without evaporative pads was performed, showing similar energy consumption.
Keywords