Buildings (Sep 2024)
Seismic Response of Multi-Story Buildings Subjected to Luding Earthquake 2022, China Considering the Deformation Saturation Theory
Abstract
Frequent seismic events have demonstrated that building collapse is primarily caused by the loss of load-bearing capacity in vertical structural members. In response to this risk, various national design codes have been established. This study conducted field investigations at an earthquake site in Luding County, Sichuan Province, which was struck at a magnitude of 6.8 on 5 September 2022. In this case, the lower x-direction load-bearing wall of the Tianyi Hotel suffered severe shear damage, and the building was on the verge of collapse. However, no obvious damage was seen in the elementary school dormitory. Numerical simulation analysis revealed that during the earthquake, the buildings primarily experienced y-direction displacement in the x-direction, with significant differences in the stress state among different axes. In the model of Tianyi Hotel, the x-direction load-bearing walls suffered shear damage, while the frame columns were still in the elastic stage. At this point, the shear force of the walls was 6–9 times that of the frame columns. Comparing the damage characteristics of the two buildings during the earthquake, it was found that different structural forms lead to different internal force distributions. This phenomenon is further interpreted through the principle of “deformation saturation”, with core structural components being modeled and tested using quasi-static experiments. The results indicated substantial differences in material properties among different structural forms, including variations in lateral stiffness, ultimate load-bearing capacity, and maximum displacement. Moreover, at the same floor level, components with smaller ultimate displacements are decisive of the overall structural stability. To ensure seismic resilience and stability, it is essential to consider not only the load-bearing capacity but also the rational arrangement and cooperative interactions between different components to achieve a balanced distribution of overall stiffness. This approach significantly enhances the building’s resistance to collapse.
Keywords