Geomatics, Natural Hazards & Risk (Dec 2022)
Mapping burned areas and land-uses in Kangaroo Island using an object-based image classification framework and Landsat 8 Imagery from Google Earth Engine
Abstract
In Australia, fire has become part of the natural ecosystem. Severe fires have devastated Australia's unique forest ecosystems due to the global climate change. In this study, we integrated a multi-resolution segmentation method and a hierarchical classification framework based on expert-based knowledge to classify the burned areas and land-uses in Kangaroo Island, South Australia. Using an object-based image classification framework that combines colour and shape features from input layers, we demonstrated that the objects segmented from the multi-source data lead to a higher accuracy in classification with an overall accuracy of 90.2% and a kappa coefficient of 85.2%. On the other hand, the single source data from post-fire Landsat-8 imagery showed an overall accuracy of 87.4% which is also statistically acceptable. According to our experiment results, more than 30.44% of the study area was burned during the 2019–2020 ‘Black-Summer’ fire season in Australia. Among the burned areas, high severity accounted for 12.14%, moderate severity for 11.48%, while low severity was 6.82%. For unburned areas, farmland accounted for 45.52% of the study area, of which about one-third was affected by the disturbances other than fire. The remaining area consists of 19.42% unaffected forest, 3.48% building and bare land, and 1.14% water. The comparison analysis shows that our object-based image classification framework takes full advantage of the multi-source data and generates the edges of burned areas more clearly, which contributes to the improved fire management and control.
Keywords