Brain Stimulation (Mar 2023)

Tomographic tract tracing and data driven approaches to unravel complex 3D fiber anatomy of DBS relevant prefrontal projections to the diencephalic-mesencephalic junction in the marmoset

  • Volker A. Coenen,
  • Akiya Watakabe,
  • Henrik Skibbe,
  • Tetsuo Yamamori,
  • Máté D. Döbrössy,
  • Bastian E.A. Sajonz,
  • Peter C. Reinacher,
  • Marco Reisert

Journal volume & issue
Vol. 16, no. 2
pp. 670 – 681

Abstract

Read online

Background: Understanding prefrontal cortex projections to diencephalic-mesencephalic junction (DMJ), especially to subthalamic nucleus (STN) and ventral mesencephalic tegmentum (VMT) helps our comprehension of Deep Brain Stimulation (DBS) in major depression (MD) and obsessive-compulsive disorder (OCD). Fiber routes are complex and tract tracing studies in non-human primate species (NHP) have yielded conflicting results. The superolateral medial forebrain bundle (slMFB) is a promising target for DBS in MD and OCD. It has become a focus of criticism owing to its name and its diffusion weighted-imaging based primary description. Objective: To investigate DMJ connectivity in NHP with a special focus on slMFB and the limbic hyperdirect pathway utilizing three-dimensional and data driven techniques. Methods: We performed left prefrontal adeno-associated virus - tracer based injections in the common marmoset monkey (n = 52). Histology and two-photon microscopy were integrated into a common space. Manual and data driven cluster analyses of DMJ, subthalamic nucleus and VMT together, followed by anterior tract tracing streamline (ATTS) tractography were deployed. Results: Typical pre- and supplementary motor hyperdirect connectivity was confirmed. The advanced tract tracing unraveled the complex connectivity to the DMJ. Limbic prefrontal territories directly projected to the VMT but not STN. Discussion: Intricate results of tract tracing studies warrant the application of advanced three-dimensional analyses to understand complex fiber-anatomical routes. The applied three-dimensional techniques can enhance anatomical understanding also in other regions with complex fiber anatomy. Conclusion: Our work confirms slMFB anatomy and enfeebles previous misconceptions. The rigorous NHP approach strengthens the role of the slMFB as a target structure for DBS predominantly in psychiatric indications like MD and OCD.

Keywords