Earth, Planets and Space (May 2018)

Preliminary paleomagnetic and rock magnetic results from 17 to 22 ka sediment of Jeju Island, Korea: Geomagnetic excursional behavior or rock magnetic anomalies?

  • Hyeon-Seon Ahn,
  • Young Kwan Sohn,
  • Jin-Young Lee,
  • Jin Cheul Kim

DOI
https://doi.org/10.1186/s40623-018-0850-4
Journal volume & issue
Vol. 70, no. 1
pp. 1 – 24

Abstract

Read online

Abstract Paleomagnetic and rock magnetic investigations were performed on a 64-cm-thick section of nonmarine unconsolidated muddy sediment from the Gosan Formation on Jeju Island, Korea. This sediment was recently dated to have been deposited between 22 and 17 kyr BP calibrated, with a sedimentation rate of 13–25 cm/kyr, based on many radiocarbon ages. Interestingly, stepwise alternating field (AF) demagnetization revealed characteristic natural remanent magnetizations with anomalous directions, manifested by marked deviations from the direction of today’s axial dipole field, for some separate depth levels. On the other hand, stepwise thermal (TH) demagnetization showed more complex behavior, resulting in the identification of multiple remanence components. For all TH-treated specimens, consistently two different components are predominant: a low-temperature component unblocked below 240–320 °C entirely having normal-polarity apparently within the secular variation range of the Brunhes Chron, and a high-temperature component with unblocking temperatures (Tubs) between 240–320 and 520–580 °C that have anomalous directions, concentrated in the ~ 13–34-cm-depth interval (~ 17–19 ka in inferred age) and possibly below ~ 53 cm depth (before ~ 20 ka). Rock magnetic results also infer the dominance of low-coercivity magnetic particles having ~ 300 and ~ 580 °C Curie temperature as remanence carriers, suggestive of (titano)maghemite and/or Ti-rich titanomagnetite and magnetite (or Ti-poor titanomagnetite), respectively. A noteworthy finding is that AF demagnetizations in this study often lead to incomplete separation of the two remanence components possibly due to their strongly overlapping AF spectra. The unusual directions do not appear to result from self-reversal remanences. Then, one interpretation is that the low-temperature components are attributable to post-depositional chemical remanences, associated possibly with the later formation of the mineral phase having Tub ~ 300 °C, whereas the high-temperature components are of primary detrital origin that survived later chemical influence. Accordingly, the unusual directions might record geomagnetic instability within the ~ 17–22 ka period manifested by multiple excursional swings, partly associated with the Tianchi/Hilina Pali excursion. However, further work is needed to verify this interpretation and distinguish it from alternative explanations that invoke rock magnetic complexities as the cause of the unusual directions.

Keywords