Sensors (Jul 2021)
Concept of an In-Plane Displacement Sensor Based on Grating Interferometry with a Stepwise Change of Sensitivity
Abstract
Grating Interferometry, known in the relevant literature as the High Sensitivity Moiré Interferometry, is a method for in-plane displacement and strain measurement. The sensitivity of this method depends on the spatial frequency of the diffraction grating attached to the object under test. For typical specimen grating, with high spatial frequency of 1200 lines per mm, the basic sensitivity is 0.417 µm per fringe. A concept of in-plane displacement sensor based on Grating Interferometry with a stepwise change in sensitivity is presented. It is realized by using the specimen grating with lower spatial frequency. In this case, the grating has more higher diffraction orders and by selecting them appropriately, the sensitivity (chosen from 1.25 μm, 0.625 μm, or 0.417 μm) and the resulting measurement range (chosen from about 600 μm, 300 μm, or 200 μm) can be adjusted to the requirements of a given experiment. A special method of filtration is required in this case. Achromatic configuration with illumination grating was chosen due to its low sensitivity to vibration.
Keywords