Drug Target Insights (May 2024)
RBD mutations at the residues K417, E484, N501 reduced immunoreactivity with antisera from vaccinated and COVID-19 recovered patients
Abstract
Introduction: It is unclear whether induced spike protein-specific antibodies due to infections with SARS-CoV-2 or to the prototypic Wuhan isolate-based vaccination can immune-react with the emerging variants of SARS-CoV-2. Aim/objectives: The main objective of the study was to measure the immunoreactivity of induced antibodies postvaccination with Covishield™ (ChAdOx1 nCoV-19 coronavirus vaccines) or infections with SARS-CoV-2 by using selected peptides of the spike protein of wild type and variants of SARS-CoV-2. Methodology: Thirty patients who had recovered from SARS-CoV-2 infections and 30 individuals vaccinated with both doses of Covishield™ were recruited for the study. Venous blood samples (5 mL) were collected at a single time point from patients within 3-4 weeks of recovery from SARS-CoV-2 infections or receiving both doses of Covishield™ vaccines. The serum levels of total immunoglobulin were measured in both study groups. A total of 12 peptides of 10 to 24 amino acids length spanning to the receptor-binding domain (RBD) of wild type of SARS-CoV-2 and their variants were synthesized. The serum levels of immune-reactive antibodies were measured using these peptides. Results: The serum levels of total antibodies were found to be significantly (p<0.001) higher in the vaccinated individuals as compared to COVID-19 recovered patients. Our study reported that the mutations in the RBD at the residues K417, E484, and N501 have been associated with reduced immunoreactivity with anti-sera of vaccinated people and COVID-19 recovered patients. Conclusion: The amino acid substitutions at the RBD of SARS-CoV-2 have been associated with a higher potential to escape the humoral immune response.
Keywords