Assembly of plasmonic nanoparticles (NPs) in suspensions is a promising approach for the control of optical and sensing properties that depend on the assembled states of plasmonic NPs. This review focuses on the controlling methods to assemble the NP via external stimuli such as pH, temperature, light, magnetic field, and electric field. External stimuli are introduced as powerful tools to assemble the NPs because of various operational factors, such as the intensity, application time, and frequency, which can be employed. In addition to a summary of recent studies on the controlling methods, a future study on the reversible control over assembled states of the plasmonic NPs via external stimuli is proposed.