PLoS ONE (Jan 2011)

Determination of plasmid copy number reveals the total plasmid DNA amount is greater than the chromosomal DNA amount in Bacillus thuringiensis YBT-1520.

  • Chunying Zhong,
  • Donghai Peng,
  • Weixing Ye,
  • Lujun Chai,
  • Junliang Qi,
  • Ziniu Yu,
  • Lifang Ruan,
  • Ming Sun

DOI
https://doi.org/10.1371/journal.pone.0016025
Journal volume & issue
Vol. 6, no. 1
p. e16025

Abstract

Read online

Bacillus thuringiensis is the most widely used bacterial bio-insecticide, and most insecticidal crystal protein-coding genes are located on plasmids. Most strains of B. thuringiensis harbor numerous diverse plasmids, although the plasmid copy numbers (PCNs) of all native plasmids in this host and the corresponding total plasmid DNA amount remains unknown. In this study, we determined the PCNs of 11 plasmids (ranging from 2 kb to 416 kb) in a sequenced B. thuringiensis subsp. kurstaki strain YBT-1520 using real-time qPCR. PCNs were found to range from 1.38 to 172, and were negatively correlated to plasmid size. The amount of total plasmid DNA (∼8.7 Mbp) was 1.62-fold greater than the amount of chromosomal DNA (∼5.4 Mbp) at the mid-exponential growth stage (OD(600) = 2.0) of the organism. Furthermore, we selected three plasmids with different sizes and replication mechanisms to determine the PCNs over the entire life cycle. We found that the PCNs dynamically shifted at different stages, reaching their maximum during the mid-exponential growth or stationary phases and remaining stable and close to their minimum after the prespore formation stage. The PCN of pBMB2062, which is the smallest plasmid (2062 bp) and has the highest PCN of those tested, varied in strain YBT-1520, HD-1, and HD-136 (172, 115, and 94, respectively). These findings provide insight into both the total plasmid DNA amount of B. thuringiensis and the strong ability of the species to harbor plasmids.