Condensed Matter (May 2022)
The Evolution of Geometric Structures, Electronic Properties, and Chemical Bonding of Small Phosphorus-Boron Clusters
Abstract
We report a comprehensive theoretical investigation on phosphorus–boron mixed neutral, anionic, and cationic clusters P2Bn/P2Bn−/P2Bn+ (n = 3–7) with two phosphorus atoms and three to seven boron atoms. We reveal the common character of all the structures (i.e., the phosphorus atoms choose to occupy the peripheral position), whereas the boron atoms tend to be in the central and inside position of the ground state phosphorus—boron mixed clusters at each stoichiometry. Any three atoms preferentially form a stable triangle and grow with zigzag shape in a planar network. Interestingly, a series of planar motifs (including tetra-, penta-, and hexa-coordination) have been discovered in the phosphorus–boron clusters. The large binding energies (3.6 to 4.6 eV/atom) and quite large HOMO–LUMO gaps (5 to 10 eV) indicate the high stability of the clusters. The energy differences Δ1E, Δ2E, and energy gaps display oscillating behavior with increasing numbers of boron atoms. The electron affinity (EA) and ionization potential (IP) generally have small variations, with the EA values ranging from 2 to 3 eV, and the IP values ranging from 7 to 9 eV. Chemical bond analysis shows that the existence of multi-center delocalized bonds stabilize the clusters.
Keywords