Role of the transient receptor potential melastatin 4 in inhibition effect of arsenic trioxide on the tumor biological features of colorectal cancer cell
Zhan Gao,
Jing Lv,
Ting-Ting Tong,
Kai Zhang,
Yu-Xuan Han,
Yu Zhao,
Mei-Mei Shen,
Yang Liu,
Tao Ban,
Yu Sun
Affiliations
Zhan Gao
General Medical Department, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
Jing Lv
Department of Pediatric Dentistry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
Ting-Ting Tong
Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
Kai Zhang
Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
Yu-Xuan Han
Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
Yu Zhao
Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
Mei-Mei Shen
Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
Yang Liu
Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
Tao Ban
Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
Yu Sun
Harbin Medical University Science Park, Harbin Medical University, Harbin, Heilongjiang, China
Background To investigate the effects of arsenic trioxide (ATO) on human colorectal cancer cells (HCT116) growth and the role of transient receptor potential melastatin 4 (TRPM4) channel in this process. Methods The viability of HCT116 cells was assessed using the CCK-8 assay. Western blot analysis was employed to examine the protein expression of TRPM4. The apoptosis of HCT116 cells was determined using TUNEL and Flow cytometry. Cell migration was assessed through the cell scratch recovery assay and Transwell cell migration assay. Additionally, Transwell cell invasion assay was performed to determine the invasion ability of HCT116 cells. Results ATO suppressed the viability of HCT116 cells in a dose-dependent manner, accompanied by a decline in cell migration and invasion, and an increase in apoptosis. 9-phenanthroline (9-Ph), a specific inhibitor of TRPM4, abrogated the ATO-induced upregulation of TRPM4 expression. Additionally, blocking TRPM4 reversed the effects of ATO on HCT116 cells proliferation, including restoration of cell viability, migration and invasion, as well as the inhibition of apoptosis. Conclusion ATO inhibits CRC cell growth by inducing TRPM4 expression, our findings indicate that ATO is a promising therapeutic strategy and TRPM4 may be a novel target for the treatment of CRC.