Journal of Dairy Science (Jul 2024)

Bacteriocins against biogenic amine-accumulating lactic acid bacteria in cheese: Nisin A shows the broadest antimicrobial spectrum and prevents the formation of biofilms

  • Luis Alberto Villarreal,
  • Victor Ladero,
  • Agustina Sarquis,
  • Beatriz Martinez,
  • Beatriz del Rio,
  • Miguel A. Alvarez

Journal volume & issue
Vol. 107, no. 7
pp. 4277 – 4287

Abstract

Read online

ABSTRACT: Cheese is a food in which toxic concentrations of biogenic amines (BA) may be reached, mainly as a consequence of the decarboxylation of determined amino acids by certain lactic acid bacteria (LAB). To maintain the food safety of cheese, environmentally friendly strategies are needed that specifically prevent the growth of BA-producing LAB and the accumulation of BA. The bacteriocins produced by LAB are natural compounds with great potential as food biopreservatives. This work examines the antimicrobial potential of 7 bacteriocin-containing, cell-free supernatants (CFS: coagulin A-CFS, enterocin A-CFS, enterocin P-CFS, lacticin 481-CFS, nisin A-CFS, nisin Z-CFS and plantaricin A-CFS) produced by LAB against 48 strains of the LAB species largely responsible for the accumulation of the most important BA in cheese, that is, histamine, tyramine, and putrescine. Susceptibility to the different CFS was strain-dependent. The histamine-producing species with the broadest sensitivity spectrum were Lentilactobacillus parabuchneri (the species mainly responsible for the accumulation of histamine in cheese) and Pediococcus parvulus. The tyramine-producing species with the broadest sensitivity spectrum was Enterococcus faecium, and Enterococcus faecalis and Enterococcus hirae were among the most sensitive putrescine producers. Nisin A-CFS was active against 31 of the 48 BA-producing strains (the broadest antimicrobial spectrum recorded). Moreover, commercial nisin A prevented biofilm formation by 67% of the BA-producing, biofilm-forming LAB strains. These findings underscore the potential of bacteriocins in the control of BA-producing LAB and support the use of nisin A as a food-grade biopreservative for keeping BA-producing LAB in check and reducing BA accumulation in cheese.

Keywords