Applied Sciences (Mar 2022)

Numerical Analysis of Dynamics of Jack-Up Offshore Platform and Its Seabed Foundation under Ocean Wave

  • Hailin Ye,
  • Dawei Yu,
  • Jianhong Ye,
  • Zhiwen Yang

DOI
https://doi.org/10.3390/app12073299
Journal volume & issue
Vol. 12, no. 7
p. 3299

Abstract

Read online

Jack-up offshore platform is a type of important marine structure, which is mainly used for satellite launch, oil exploitation, and other engineering tasks in the offshore area. The offshore platform is bound to be subjected to wave loading in the course of use. Whether it can withstand the wave impact is an important engineering problem. To solve this engineering problem, the self-developed fluid–structure–foundation interaction coupling model OlaFlow-ABAQUS is used to explore the dynamic response characteristics of a jack-up offshore platform and its seabed foundation under three conventional wave conditions (wave height is 3, 5, and 7 m, respectively) in a coupled way. The numerical results show that only a small amplitude of periodic sloshing occurs for the jack-up offshore platform under the three conventional wave conditions. The maximum sloshing amplitude is up to 8 cm, and there is no visible residual displacement. It is indicated that there is no plastic deformation zone in the seabed foundation near the pile legs of the jack-up platform. It can thus be concluded that the jack-up platform has excellent stability under conventional wave conditions. Under conventional wave loading, momentary liquefaction occurs in the seabed foundation around the pile legs of the platform, and the maximum liquefaction depth is about 1 m. This study indicates that the coupling model OlaFlow-ABAQUS for the fluid–structure–foundation interaction is feasible, and has some advantages to study the dynamic response and to evaluate the stability of large-scale marine structures and their seabed foundations under ocean waves.

Keywords