Gong-kuang zidonghua (Feb 2024)

Research on weighting strategies for safety status evaluation indicators in coal mine working faces

  • WANG Meng,
  • LIU Shulin

DOI
https://doi.org/10.13272/j.issn.1671-251x.18148
Journal volume & issue
Vol. 50, no. 2
pp. 153 – 160

Abstract

Read online

Accurate evaluation of the safety status of the working face can promote the improvement of mine safety management level and disaster prevention and resilience. Using CH4 concentration, CO2 concentration, CO concentration, O2 concentration, temperature, and wind speed as evaluation indicators, the safety status of the working face is evaluated and analyzed. To reasonably determine the weight of evaluation indicators and improve the accuracy of safety evaluation results, the fuzzy analytical hierarchy process(FAHP) is used to calculate the subjective weight of evaluation indicators, and the G-GRITIC method is used to calculate the objective weight of indicators. The combination weighting method based on improved game theory (IGT) combines subjective weight with objective weight to obtain the combination weight of evaluation indicators, solving the problem of inconsistent subjective and objective information in the decision-making process. Based on the data collected by the safety monitoring system of the 209 fully mechanized working face of Shaanxi Huangling No.2 Coal Mine Co., Ltd., experimental verification is conducted on the IGT based combination weighting method. The results show that this method effectively avoids the subjective judgment of linear weighting method and average weighting method, optimizes the deviation results of the game theory (GT) combination weighting method. It obtains more reasonable evaluation indicators, which can obtain more accurate evaluation results of the safety status of the coal mine working face.

Keywords