PLoS Biology (Oct 2019)

KHDC3L mutation causes recurrent pregnancy loss by inducing genomic instability of human early embryonic cells.

  • Weidao Zhang,
  • Zhongliang Chen,
  • Dengfeng Zhang,
  • Bo Zhao,
  • Lu Liu,
  • Zhengyuan Xie,
  • Yonggang Yao,
  • Ping Zheng

DOI
https://doi.org/10.1371/journal.pbio.3000468
Journal volume & issue
Vol. 17, no. 10
p. e3000468

Abstract

Read online

Recurrent pregnancy loss (RPL) is an important complication in reproductive health. About 50% of RPL cases are unexplained, and understanding the genetic basis is essential for its diagnosis and prognosis. Herein, we report causal KH domain containing 3 like (KHDC3L) mutations in RPL. KHDC3L is expressed in human epiblast cells and ensures their genome stability and viability. Mechanistically, KHDC3L binds to poly(ADP-ribose) polymerase 1 (PARP1) to stimulate its activity. In response to DNA damage, KHDC3L also localizes to DNA damage sites and facilitates homologous recombination (HR)-mediated DNA repair. KHDC3L dysfunction causes PARP1 inhibition and HR repair deficiency, which is synthetically lethal. Notably, we identified two critical residues, Thr145 and Thr156, whose phosphorylation by Ataxia-telangiectasia mutated (ATM) is essential for KHDC3L's functions. Importantly, two deletions of KHDC3L (p.E150_V160del and p.E150_V172del) were detected in female RPL patients, both of which harbor a common loss of Thr156 and are impaired in PARP1 activation and HR repair. In summary, our study reveals both KHDC3L as a new RPL risk gene and its critical function in DNA damage repair pathways.