International Journal of Digital Earth (Dec 2023)
A scalable software package for time series reconstruction of remote sensing datasets on the Google Earth Engine platform
Abstract
Spatiotemporal residual noise in terrestrial earth observation products, often caused by unfavorable atmospheric conditions, impedes their broad applications. Most users prefer to use gap-filled remote sensing products with time series reconstruction (TSR) algorithms. Applying currently available implementations of TSR to large-volume datasets is time-consuming and challenging for non-professional users with limited computation or storage resources. This study introduces a new open-source software package entitled ‘HANTS-GEE’ that implements a well-known and robust TSR algorithm, i.e. Harmonic ANalysis of Time Series (HANTS), on the Google Earth Engine (GEE) platform for scalable reconstruction of terrestrial earth observation data. Reconstruction tasks can be conducted on user-defined spatiotemporal extents when raw datasets are available on GEE. According to site-based and regional-based case evaluation, the new tool can effectively eliminate cloud contamination in the time series of earth observation data. Compared with traditional PC-based HANTS implementation, the HANTS-GEE provides quite consistent reconstruction results for most terrestrial vegetated sites. The HANTS-GEE can provide scalable reconstruction services with accelerated processing speed and reduced internet data transmission volume, promoting algorithm usage by much broader user communities. To our knowledge, the software package is the first tool to support full-stack TSR processing for popular open-access satellite sensors on cloud platforms.
Keywords