Biogeosciences (Feb 2014)

Icehouse–greenhouse variations in marine denitrification

  • T. J. Algeo,
  • P. A. Meyers,
  • R. S. Robinson,
  • H. Rowe,
  • G. Q. Jiang

DOI
https://doi.org/10.5194/bg-11-1273-2014
Journal volume & issue
Vol. 11, no. 4
pp. 1273 – 1295

Abstract

Read online

Long-term secular variation in the isotopic composition of seawater fixed nitrogen (N) is poorly known. Here, we document variation in the N-isotopic composition of marine sediments (δ15Nsed) since 660 Ma (million years ago) in order to understand major changes in the marine N cycle through time and their relationship to first-order climate variation. During the Phanerozoic, greenhouse climate modes were characterized by low δ15Nsed (∼−2 to +2‰) and icehouse climate modes by high δ15Nsed (∼+4 to +8‰). Shifts toward higher δ15Nsed occurred rapidly during the early stages of icehouse modes, prior to the development of major continental glaciation, suggesting a potentially important role for the marine N cycle in long-term climate change. Reservoir box modeling of the marine N cycle demonstrates that secular variation in δ15Nsed was likely due to changes in the dominant locus of denitrification, with a shift in favor of sedimentary denitrification during greenhouse modes owing to higher eustatic (global sea-level) elevations and greater on-shelf burial of organic matter, and a shift in favor of water-column denitrification during icehouse modes owing to lower eustatic elevations, enhanced organic carbon sinking fluxes, and expanded oceanic oxygen-minimum zones. The results of this study provide new insights into operation of the marine N cycle, its relationship to the global carbon cycle, and its potential role in modulating climate change at multimillion-year timescales.