Proceedings of the XXth Conference of Open Innovations Association FRUCT (Nov 2017)

Fast and modular regularized topic modelling

  • Denis Kochedykov,
  • Murat Apishev,
  • Lev Golitsyn,
  • Konstantin Vorontsov

DOI
https://doi.org/10.23919/FRUCT.2017.8250181
Journal volume & issue
Vol. 562, no. 21
pp. 182 – 193

Abstract

Read online

Topic modelling is an area of text mining that has been actively developed in the last 15 years. A probabilistic topic model extracts a set of hidden topics from a collection of text documents. It defines each topic by a probability distribution over words and describes each document with a probability distribution over topics. In applications, there are often many requirements, such as, for example, problem-specific knowledge and additional data, to be taken into account. Therefore, it is natural for topic modelling to be considered a multiobjective optimization problem. However, historically, Bayesian learning became the most popular approach for topic modelling. In the Bayesian paradigm, all requirements are formalized in terms of a probabilistic generative process. This approach is not always convenient due to some limitations and technical difficulties. In this work, we develop a non-Bayesian multiobjective approach called the Additive Regularization of Topic Models (ARTM). It is based on regularized Maximum Likelihood Estimation (MLE), and we show that many of the well-known Bayesian topic models can be re-formulated in a much simpler way using the regularization point of view. We review some of the most important types of topic models: multimodal, multilingual, temporal, hierarchical, graph-based, and short-text. The ARTM framework enables easy combination of different types of models to create new models with the desired properties for applications. This modular “lego-style” technology for topic modelling is implemented in the open-source library BigARTM.

Keywords