Insects (Sep 2024)

The Effect of Elevation Gradient on Distribution and Body Size of Carabid Beetles in the Changbaishan Nature Reserve in Northeast Asia

  • Shengdong Liu,
  • Jiaqi Tong,
  • Mingfeng Xu,
  • Qingfan Meng,
  • Ying Shi,
  • Hongrui Zhao,
  • Yan Li

DOI
https://doi.org/10.3390/insects15090688
Journal volume & issue
Vol. 15, no. 9
p. 688

Abstract

Read online

The environment of mountain ecosystems can change greatly in short distances as elevation increases. The effects of elevation change on the distribution and body size of carabid beetles were investigated at elevations of 750–2600 m in the Changbaishan Nature Reserve (Northeast China). The richness and abundance of carabid species decreased significantly as elevation increased. However, the change trends are different in forests and tundra. In the broad-leaved Korean pine forest and coniferous forest at low elevations, carabid beetle species have high richness and abundance. The community composition of carabid beetles was significantly different at different elevations and among different vegetation types. Some species only occurred at specific elevations. There were fewer indicator species in high-elevation areas, but Carabus macleayi Dejean, Nebria pektusanica Horratovich and Pterostichus jaechi Kirschenhofer were mainly found in high-elevation areas. The average body size of species in the carabid beetle community was negatively correlated with elevation. The sizes of the larger Carabus canaliculatus Adams and Carabus venustus Morawitz were negatively correlated with elevation. Their body sizes decreased obviously in the tundra at elevations above 2000 m. Changes in vegetation types at high elevations affect the distribution and body sizes of beetles along the elevation gradient. Some large carabid species may be smaller at high elevations where a unique insect fauna has developed. The body size and distribution range of the carabid may be the factors that affect body size reduction at high elevation. Although some high-elevation species also occur in low-elevation areas, the protection of species diversity in high-elevation areas should be emphasized in the context of global climate change. The results illustrate the mechanisms of carabid beetles’ response to elevation change and the need for carabid beetles’ diversity conservation under global climate change.

Keywords