PLoS ONE (Jan 2012)
Differential capacity of human skin dendritic cells to polarize CD4+ T cells into IL-17, IL-21 and IL-22 producing cells.
Abstract
Accumulating evidence suggests a contribution of T cell-derived IL-17, IL-21 and IL-22 cytokines in skin immune homeostasis as well as inflammatory disorders. Here, we analyzed whether the cytokine-producing T lymphocytes could be induced by the different subsets of human skin dendritic cells (DCs), i.e., epidermal Langerhans cells (LCs), dermal CD1c(+)CD14(-) and CD14(+) DCs (DDCs). DCs were purified following a 2-day migration from separated epidermal and dermal sheets and co-cultured with allogeneic T cells before cytokine secretion was explored. Results showed that no skin DCs could induce substantial IL-17 production by naïve CD4(+) or CD8(+)T lymphocytes whereas all of them could induce IL-17 production by memory T cells. In contrast, LCs and CD1c(+)CD14(-)DDCs were able to differentiate naïve CD4(+)T lymphocytes into IL-22 and IL-21-secreting cells, LCs being the most efficient in this process. Intracellular cytokine staining showed that the majority of IL-21 or IL-22 secreting CD4(+)T lymphocytes did not co-synthesized IFN-γ, IL-4 or IL-17. IL-21 and IL-22 production were dependent on the B7/CD28 co-stimulatory pathway and ICOS-L expression on skin LCs significantly reduced IL-21 level. Finally, we found that TGF-β strongly down-regulates both IL-21 and IL-22 secretion by allogeneic CD4(+) T cells. These results add new knowledge on the functional specialization of human skin DCs and might suggest new targets in the treatment of inflammatory skin disorders.