Resources (Feb 2023)

Analyzing the Impact of Ungauged Hill Torrents on the Riverine Floods of the River Indus: A Case Study of Koh E Suleiman Mountains in the DG Khan and Rajanpur Districts of Pakistan

  • Maaz Saleem,
  • Muhammad Arfan,
  • Kamran Ansari,
  • Daniyal Hassan

DOI
https://doi.org/10.3390/resources12020026
Journal volume & issue
Vol. 12, no. 2
p. 26

Abstract

Read online

Floods are one of the most destructive natural hazards in Pakistan, causing significant damage. During monsoons, when westerly winds and concentrated rainfall occur in rivers’ catchments, floods become unmanageable. Given the limited resources of Pakistan, there has been minimal effort to quantify the amount of rainfall and runoff generated by ungauged catchments. In this study, ten hill torrents in Koh e Suleiman (District Rajanpur and DG Khan), an area affected by flash flooding in 2022 due to extreme precipitation events, were investigated. The Hydrologic Engineering Centre’s Hydrologic Modeling System (HEC-HMS), a semi-distributed event-based hydrological model, was used to delineate streams and quantify runoff. Statistical analysis of the rainfall trends was performed using the non-parametric Gumbel extreme value analysis type I distribution, the Mann–Kendall test, and Sen’s slope. The results of the study show that the total inflow to the river Indus is 0.5, 0.6, 0.7, and 0.8 MAF for 25, 50, 100, and 200 years of return period rainfall, respectively. This study presents appropriate storage options with a retention potential of 0.14, 1.14, and 1.13 MAF based on an analysis of the hydrology of these hill torrents to enhance the spate irrigation potential as flood control in the future.

Keywords