Arabian Journal of Chemistry (Mar 2022)

Formulation and characterization of a novel anti-human endometrial cancer supplement by gold nanoparticles green-synthesized using Spinacia oleracea L. Leaf aqueous extract

  • Bing Zhu,
  • Na Xie,
  • Lulu Yue,
  • Kun Wang,
  • Mutasem Z. Bani-Fwaz,
  • Hosam-Eldin Hussein Osman,
  • Attalla F. El-kott,
  • Xuelian Bai

Journal volume & issue
Vol. 15, no. 3
p. 103576

Abstract

Read online

Gold nanoparticles as one of the productions of the chemistry field have a special place in the cure of many diseases. Many experiences in medicinal researches have indicated that the plants enhance the anticancer effects of gold nanoparticles. According to the above contents, we investigated the capacities of Spinacia oleracea L. leaf aqueous extract green-mediated gold nanoparticles (AuNPs) as a modern chemotherapeutic material in treating endometrial cancer. The physicochemical characterization tests including UV–Visible Spectroscopy (UV–Vis), Field Emission Scanning Electron Microscopy (FE‐SEM), Fourier Transformed Infrared Spectroscopy (FT‐IR), and Transmission Electron Microscopy (TEM) were used for investigating the physicochemical properties of AuNPs. To survey the antioxidant potentials of AuNPs, one of the common antioxidant techniques i.e., DPPH was used. Determination of anti-endometrial cancer effects of AuNPs was carried out by the MTT assay and against Ishikawa, KLE, HEC-1-A, and HEC-1-B cell lines. The physicochemical characterization analyses revealed that the AuNPs had been formulated as the best possible. The results of the DPPH test confirmed excellent antioxidant properties of AuNPs in comparison to the butylated hydroxytoluene. The AuNPs IC50 was 194 µg/mL in the antioxidant test. The results of the MTT assay confirmed removing Ishikawa, KLE, HEC-1-A, and HEC-1-B cell lines after treating with low concentrations of AuNPs. The IC50 of the AuNPs was 341, 335, 316, and 325 µg/mL against Ishikawa, KLE, HEC-1-A, and HEC-1-B cell lines, respectively. The best finding of anti-endometrial cancer potentials was determined in the HEC-1-A cell line. According to the above results, significant anti-endometrial cancer effects of Au nanoparticles green-mediated by S. oleracea leaf extract are confirmed. It is offered that the studies of the clinical trial are performed for approving the above findings in humans.

Keywords