Materials (Mar 2022)

Cellulose Nanofibrils as a Damping Material for the Production of Highly Crystalline Nanosized Zeolite Y via Ball Milling

  • Haya Nassrullah,
  • Shaheen Fatima Anis,
  • Boor Singh Lalia,
  • Raed Hashaikeh

DOI
https://doi.org/10.3390/ma15062258
Journal volume & issue
Vol. 15, no. 6
p. 2258

Abstract

Read online

Nanosized zeolite Y is used in various applications from catalysis in petroleum refining to nanofillers in water treatment membranes. Ball milling is a potential and fast technique to decrease the particle size of zeolite Y to the nano range. However, this technique is associated with a significant loss of crystallinity. Therefore, in this study, we investigate the effect of adding biodegradable and recyclable cellulose nanofibrils (CNFs) to zeolite Y in a wet ball milling approach. CNFs are added to shield the zeolite Y particles from harsh milling conditions due to their high surface area, mechanical strength, and water gel-like format. Different zeolite Y to CNFs ratios were studied and compared to optimize the ball milling process. The results showed that the optimal zeolite Y to CNFs ratio is 1:1 to produce a median particle size diameter of 100 nm and crystallinity index of 32%. The size reduction process provided accessibility to the zeolite pores and as a result increased their adsorption capacity. The adsorption capacity of ball-milled particles for methylene blue increased to 29.26 mg/g compared to 10.66 mg/g of the pristine Zeolite. These results demonstrate the potential of using CNF in protecting zeolite Y particles and possibly other micro particles during ball milling.

Keywords