Entropy (Jun 2023)

Finite-Size Relaxational Dynamics of a Spike Random Matrix Spherical Model

  • Pedro H. de Freitas Pimenta,
  • Daniel A. Stariolo

DOI
https://doi.org/10.3390/e25060957
Journal volume & issue
Vol. 25, no. 6
p. 957

Abstract

Read online

We present a thorough numerical analysis of the relaxational dynamics of the Sherrington–Kirkpatrick spherical model with an additive non-disordered perturbation for large but finite sizes N. In the thermodynamic limit and at low temperatures, the perturbation is responsible for a phase transition from a spin glass to a ferromagnetic phase. We show that finite-size effects induce the appearance of a distinctive slow regime in the relaxation dynamics, the extension of which depends on the size of the system and also on the strength of the non-disordered perturbation. The long time dynamics are characterized by the two largest eigenvalues of a spike random matrix which defines the model, and particularly by the statistics concerning the gap between them. We characterize the finite-size statistics of the two largest eigenvalues of the spike random matrices in the different regimes, sub-critical, critical, and super-critical, confirming some known results and anticipating others, even in the less studied critical regime. We also numerically characterize the finite-size statistics of the gap, which we hope may encourage analytical work which is lacking. Finally, we compute the finite-size scaling of the long time relaxation of the energy, showing the existence of power laws with exponents that depend on the strength of the non-disordered perturbation in a way that is governed by the finite-size statistics of the gap.

Keywords