BMC Medical Informatics and Decision Making (Sep 2021)

Use of large scale EHR data to evaluate A1c utilization among sickle cell disease patients

  • Shivani Sivasankar,
  • An-Lin Cheng,
  • Ira M. Lubin,
  • Kamani Lankachandra,
  • Mark A. Hoffman

DOI
https://doi.org/10.1186/s12911-021-01632-5
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background The glycated hemoglobin (A1c) test is not recommended for sickle cell disease (SCD) patients. We examine ordering patterns of diabetes-related tests for SCD patients to explore misutilization of tests among this underserved population. Methods We used de-identified electronic health record (EHR) data in the Cerner Health Facts™ (HF) data warehouse to evaluate the frequency of A1c and fructosamine tests during 2010 to 2016, for 37,151 SCD patients from 393 healthcare facilities across the United States. After excluding facilities with no A1c data, we defined three groups of facilities based on the prevalence of SCD patients with A1c test(s): adherent facilities (no SCD patients with A1c test(s)), minor non-adherent facilities, major non-adherent facilities. Results We determined that 11% of SCD patients (3927 patients) treated at 393 facilities in the US received orders for at least one A1c test. Of the 3927 SCD patients with an A1c test, only 89 patients (2.3%) received an order for a fructosamine test. At the minor non-adherent facilities, 5% of the SCD patients received an A1c test while 58% of the SCD patients at the least adherent facilities had at least one A1c test. Overall, the percent of A1c tests ordered for SCD patients between 2010 and 2016 remained similar. Conclusions Inappropriate A1c test orders among a sickle cell population is a significant quality gap. Interventions to advance adoption of professional recommendations that advocate for alternate tests, such as fructosamine, can guide clinicians in test selection to reduce this quality gap are discussed. The informatics strategy used in this work can inform other largescale analyses of lab test utilization using de-identified EHR data.

Keywords