Tongxin xuebao (Dec 2016)
Novel method based on fractional lower-order correntropy-analogous statistics for parameter jointly estimation in bistatic MIMO radar
Abstract
According to the performance degradation problem of parameter estimation algorithm in the Alpha stable dis-tribution noise, inspired by the concept of correntropy, a new class of statistics, namely, the fractional lower-order cor-rentropy-analogous statistics (FCAS) was proposed. By employing the fractional lower-order correntropy-analogous sta-tistics based cost function in parallel factor (PARAFAC), the FCAS-PARAFAC algorithm was deduced which can be utilized for the parallel factor under impulsive noise environments. The FCAS-PARAFAC algorithm was applied to pa-rameter estimation in bistatic MIMO radar under impulsive noise environment. The proposed method can suppress the impulse noise interference and has better estimation performance. Furthermore, the estimated parameters are automati-cally paired without the additional pairing method. Simulation results are presented to verify the effectiveness of the pro-posed method.