South-East European Forestry (May 2015)

The Potential Use of Indigobush (Amorpha fruticosa L.) as Natural Resource of Biologically Active Compounds

  • Tamara Jakovljević,
  • Jasna Halambek,
  • Kristina Radošević,
  • Karla Hanousek,
  • Marija Gradečki-Poštenjak,
  • Višnja Gaurina Srček,
  • Ivana Radojčić Redovniković,
  • Alessandra De Marco

DOI
https://doi.org/10.15177/seefor.15-13
Journal volume & issue
Vol. 6, no. 2
pp. 171 – 178

Abstract

Read online

Background and Purpose: Recent research indicates that a weed like Indigobush (Amorpha fruticosa L.) gives great opportunities for its commercialization through a rich spectrum of its beneficial biological features with possible use in the forestry and biotechnology field. Therefore, in this study we wanted to explore some of potential application of Indigobush extract, as a source of biologically active compounds, for animal cell culturing as well as green corrosion inhibitors. Materials and Methods: The effect of ethanol extract of Indigobush seeds was studied on human tumor cell lines (HeLa and MCF-7) and cell viability was determined by WST-1 method after 72 hours of treatment with 6 different extract concentrations (0.5-10 mg∙mL-1). The inhibition effect of Indigobush seeds extract on the corrosion of aluminum in 0.5 M hydrochloric acid solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. Results: Results showed that the addition of Indigobush extract had a stimulatory effect on MCF-7 cells growth at the concentrations >1 mg∙mL-1 while the same effect on HeLa cells was observed only at the highest concentration of Indigobush extract (10 mg∙mL-1). The stimulatory effect of Indigobush extract on cell viability was more pronounced when the cells were grown in a medium with 5% FBS compared to 10% FBS (v/v). Indigobush extract did not show cytotoxic effect on MCF-7 and HeLa cells. Electrochemical studies showed that with increasing extract concentrations (2.5-15 mg∙mL-1) the values of corrosion current densities decrease, while the polarization resistance values increase. The maximum inhibition efficiency of Indigobush extract is reached at concentration of 15 mg∙mL-1 (82.9%). Conclusions: The Indigobush ethanol extract has no cytotoxic effect on human tumor cell lines MCF-7 and HeLa. Results confirmed that extract originated from Indigobush has the potential to utilize for the mammalian cell culture media formulation by replacing the animal serum. Furthermore, data indicates that Indigobush extract has potential as green alternative to existing synthetic corrosion inhibitors.

Keywords