Molecules (Dec 2023)

Development of a HPLC-MS/MS Method to Assess the Pharmacokinetics and Tumour Distribution of the Dimethylarginine Dimethylaminohydrolase 1 Inhibitors ZST316 and L-257 in a Xenograft Model of Triple-Negative Breast Cancer in Mice

  • Tommaso Ceruti,
  • Roberta Frapolli,
  • Carmen Ghilardi,
  • Alessandra Decio,
  • Giulia Dellavedova,
  • Sara Tommasi,
  • Massimo Zucchetti,
  • Arduino A. Mangoni

DOI
https://doi.org/10.3390/molecules28248056
Journal volume & issue
Vol. 28, no. 24
p. 8056

Abstract

Read online

We describe the development and validation of an HPLC-MS/MS method to assess the pharmacokinetics and tumour distribution of ZST316, an arginine analogue with inhibitory activity towards dimethylarginine dimethylaminohydrolase 1 (DDAH1) and vasculogenic mimicry, and its active metabolite L-257 in a xenograft model of triple-negative breast cancer (TNBC). The method proved to be reproducible, precise, and highly accurate for the measurement of both compounds in plasma and tumour tissue following acute and chronic (five days) intraperitoneal administration of ZST316 (30 mg/Kg daily) in six-week-old severe combined immunodeficiency disease (SCID) mice inoculated with MDA-MB-231 TNBC cells. ZST316 was detected in tumour tissue and plasma after 1 h (6.47 and 9.01 μM, respectively) and 24 h (0.13 and 0.16 μM, respectively) following acute administration, without accumulation during chronic treatment. Similarly, the metabolite L-257 was found in tumour tissue and plasma after 1 h (15.06 and 8.72 μM, respectively) and 24 h (0.17 and 0.17 μM, respectively) following acute administration of ZST316, without accumulation during chronic treatment. The half-life after acute and chronic treatment ranged between 4.4–7.1 h (plasma) and 4.5–5.0 h (tumour) for ZST316, and 4.2–5.3 h (plasma) and 3.6–4.9 h (tumour) for L-257. The results of our study demonstrate the (a) capacity to accurately measure ZST316 and L-257 concentrations in plasma and tumour tissue in mice using the newly developed HPLC-MS/MS method, (b) rapid conversion of ZST316 into L-257, (c) good intra-tumour penetration of both compounds, and (d) lack of accumulation of both ZST316 and L-257 in plasma and tumour tissue during chronic administration. Compared to a previous method developed by our group to investigate ZST316 in plasma, the main advantages of the new method include a wider range of linearity which reduces the need for dilutions and the combined assessment of ZST316 and L-257 in plasma and tumour tissue which limits the required amount of matrix. The new HPLC-MS/MS method is useful to investigate the in vivo effects of ZST316 and L-257 on vasculogenic mimicry, tumour mass, and metastatic burden in xenograft models of TNBC.

Keywords