Pathogens (Dec 2023)

Quorum Quenching with a Diffusible Signal Factor Analog in <i>Stenotrophomonas maltophilia</i>

  • Dafne Guillén-Navarro,
  • Rosa González-Vázquez,
  • Gloria León-Ávila,
  • Silvia Giono-Cerezo

DOI
https://doi.org/10.3390/pathogens12121448
Journal volume & issue
Vol. 12, no. 12
p. 1448

Abstract

Read online

Stenotrophomonas maltophilia is a multidrug-resistant Gram-negative bacillus associated with nosocomial infections in intensive care units, and nowadays, its acquired resistance to trimethoprim–sulfamethoxazole (SXT) by sul genes within class 1 integrons is a worldwide health problem. Biofilm and motility are two of the major virulence factors in this bacterium and are auto-induced by the diffusible signal factor (DSF). In recent studies, retinoids have been used to inhibit (Quorum Quenching) these virulence factors and for their antimicrobial effect. The aim was to reduce biofilm formation and motility with retinoic acid (RA) in S. maltophilia SXT-resistant strains. Eleven SXT-resistant strains and two SXT-susceptible strains were tested for biofilm formation/reduction and planktonic/sessile cell viability with RA and SXT-MIC50/RA; motility (twitching, swimming, swarming) was measured with/without RA; and MLST typing was determined. The biofilm formation of the strains was classified as follows: 15.38% (2/13) as low, 61.54% (8/13) as moderate, and 23.08% (3/13) as high. It was significantly reduced with RA and SXT-MIC50/RA (p p > 0.05), but it was with SXT-MIC50/RA (p p p S. maltophilia registered in PubMLST (ST479-485, ST497, ST23, ST122, ST175, ST212, and ST300). In conclusion, RA reduced biofilm formation and motility without affecting cell viability; furthermore, antimicrobial synergism with SXT-MIC50/RA in different and novel STs of S. maltophilia was observed.

Keywords