Pathophysiology (Sep 2024)

ITIH4 in Rheumatoid Arthritis Pathogenesis: Network Pharmacology and Molecular Docking Analysis Identify CXCR4 as a Potential Receptor

  • Lovely Joshi,
  • Debolina Chakraborty,
  • Vijay Kumar,
  • Sagarika Biswas

DOI
https://doi.org/10.3390/pathophysiology31030038
Journal volume & issue
Vol. 31, no. 3
pp. 514 – 530

Abstract

Read online

Elevated levels of Inter-alpha-trypsin-inhibitor heavy chain 4 (ITIH4) have grabbed attention in rheumatoid arthritis (RA) pathogenesis, though its precise mechanisms remain unexplored. To elucidate these mechanisms, a comprehensive strategy employing network pharmacology and molecular docking was utilized. RA targets were sourced from the DisGeNET Database while interacting targets of ITIH4 were retrieved from the STRING and Literature databases. Venny 2.1 was used to identify overlapping genes, followed by Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) through Cytoscape 3.10.2 software, and molecular docking was performed in the ClusPro server. The study identified 18 interacting proteins of ITIH4 associated with RA, demonstrating their major involvement in the chemokine signaling pathway by enrichment analysis. Molecular docking of ITIH4 with the 18 proteins revealed that C-X-C chemokine-receptor type 4 (CXCR4), a major protein associated with chemokine signaling, has the highest binding affinity with ITIH4 with energy −1705.7 kcal/mol forming 3 Hydrogen bonds in the active site pocket of ITIH4 with His441, Arg288, Asp443 amino acids. The effect of ITIH4 on CXCR4 was analyzed via knockdown studies in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS), demonstrating the significant downregulation of CXCR4 protein expression validated by Western blot in RA-FLS. In conclusion, it was speculated that CXCR4 might serve as a potential receptor for ITIH4 to activate the chemokine signaling, exacerbating RA pathogenesis.

Keywords