Scientific Reports (Apr 2023)

Physically informed machine-learning algorithms for the identification of two-dimensional atomic crystals

  • Laura Zichi,
  • Tianci Liu,
  • Elizabeth Drueke,
  • Liuyan Zhao,
  • Gongjun Xu

DOI
https://doi.org/10.1038/s41598-023-33298-6
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 8

Abstract

Read online

Abstract After graphene was first exfoliated in 2004, research worldwide has focused on discovering and exploiting its distinctive electronic, mechanical, and structural properties. Application of the efficacious methodology used to fabricate graphene, mechanical exfoliation followed by optical microscopy inspection, to other analogous bulk materials has resulted in many more two-dimensional (2D) atomic crystals. Despite their fascinating physical properties, manual identification of 2D atomic crystals has the clear drawback of low-throughput and hence is impractical for any scale-up applications of 2D samples. To combat this, recent integration of high-performance machine-learning techniques, usually deep learning algorithms because of their impressive object recognition abilities, with optical microscopy have been used to accelerate and automate this traditional flake identification process. However, deep learning methods require immense datasets and rely on uninterpretable and complicated algorithms for predictions. Conversely, tree-based machine-learning algorithms represent highly transparent and accessible models. We investigate these tree-based algorithms, with features that mimic color contrast, for automating the manual inspection process of exfoliated 2D materials (e.g., MoSe2). We examine their performance in comparison to ResNet, a famous Convolutional Neural Network (CNN), in terms of accuracy and the physical nature of their decision-making process. We find that the decision trees, gradient boosted decision trees, and random forests utilize physical aspects of the images to successfully identify 2D atomic crystals without suffering from extreme overfitting and high training dataset demands. We also employ a post-hoc study that identifies the sub-regions CNNs rely on for classification and find that they regularly utilize physically insignificant image attributes when correctly identifying thin materials.