International Journal of STEM Education (Apr 2018)

Pedagogical knowledge for active-learning instruction in large undergraduate biology courses: a large-scale qualitative investigation of instructor thinking

  • Anna Jo J. Auerbach,
  • Tessa C. Andrews

DOI
https://doi.org/10.1186/s40594-018-0112-9
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 25

Abstract

Read online

Abstract Background Though active-learning instruction has the potential to positively impact the preparation and diversity of STEM graduates, not all instructors are able to achieve this potential. One important factor is the teacher knowledge that instructors possess, including their pedagogical knowledge. Pedagogical knowledge is the knowledge about teaching and learning that is not topic-specific, such as knowledge of learning theory, classroom management, and student motivation. We investigated the pedagogical knowledge that 77 instructors who report implementing active-learning instruction used as they analyzed video clips of lessons in large active-learning biology courses. We used qualitative content analysis, and drew on cognitive and sociocultural perspectives of learning, to identify and characterize the pedagogical knowledge instructors employed. We used the collective thinking of these instructors to generate a framework of pedagogical knowledge for active-learning instruction in large undergraduate biology courses. Results We identified seven distinct components of pedagogical knowledge, as well as connections among these components. At the core of their thinking, participants evaluated whether instruction provided opportunities for students to generate ideas beyond what was presented to them and to engage in scientific practices. They also commonly considered student motivation to engage in this work and how instruction maximized equity among students. Participants noticed whether instructors monitored and responded to student thinking in real-time, how instruction prompted metacognition, and how links were built between learning tasks. Participants also thought carefully about managing the logistics of active-learning lessons. Conclusions Instructors who report using active-learning instruction displayed knowledge of principles of how people learn, practical knowledge of teaching strategies and behaviors, and knowledge related to classroom management. Their deep knowledge of pedagogy suggests that active-learning instruction requires much more than content knowledge built through training in the discipline, yet many college STEM instructors have little or no training in teaching. Further research should test this framework of pedagogical knowledge in different instruction contexts, including different STEM disciplines. Additional research is needed to understand what teacher knowledge is critical to effective active-learning instruction and how the development of this knowledge is best facilitated. Achieving widespread improvement in undergraduate STEM education will likely require transforming our approach to preparing and supporting undergraduate instructors.

Keywords