Actuators (Sep 2021)
Fixed Points on Active and Passive Dynamics of Active Hydraulic Mounts with Oscillating Coil Actuator
Abstract
Active hydraulic mounts with an inertia track, decoupler membrane, and oscillating coil actuator (AHM-IT-DM-OCAs) have been studied extensively due their compact structure and large damping in the low-frequency band. This paper focuses on a comprehensive analysis of the active and passive dynamics and their fixed points in mid-low-frequency bands, which will be helpful for parameter identification. A unified lumped parameter mechanical model with two degrees-of-freedom is established. The inertia and damping forces of the decoupler/actuator mover may be neglected, and a nonlinear mathematical model can be obtained for mid-low-frequency bands. Theoretical analysis of active and passive dynamics for fluid-filled state reveals the amplitude dependence and a fixed point in passive dynamic stiffness in-phase or active real-frequency characteristics. The amplitude dependence of local loss at the fluid channel entrance and outlet induces the amplitude-dependent dynamics. The amplitude-dependent dynamics constitute a precondition for fixed points. A single fixed point in passive dynamics is experimentally validated, and a pair of fixed points in active dynamics for an AHM-IT-DM-OCA is newly revealed in an experiment, which presents a new issue for further analysis.
Keywords