The fecal microbiota of patients with primary biliary cholangitis (PBC) causes PBC-like liver lesions in mice and exacerbates liver damage in a mouse model of PBC
Huiyong Jiang,
Ying Yu,
Xiaoxiang Hu,
Bingbing Du,
Yini Shao,
Feiyu Wang,
Lifeng Chen,
Ren Yan,
Lanjuan Li,
Longxian Lv
Affiliations
Huiyong Jiang
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
Ying Yu
School of Public Health, Hangzhou Medical College, Hangzhou, China
Xiaoxiang Hu
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
Bingbing Du
Microecological Laboratory, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
Yini Shao
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
Feiyu Wang
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
Lifeng Chen
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
Ren Yan
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
Lanjuan Li
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
Longxian Lv
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
The role of the gut microbiota in the occurrence and progression of primary biliary cholangitis (PBC) is not fully understood. First, the fecal microbiota of patients with PBC (n = 4) (PBC-FMT) or healthy individuals (n = 3) (HC-FMT) was transplanted into pseudo germ-free mice or 2OA-BSA–induced PBC models. The functions, histology and transcriptome of the liver, and microbiota and metabolome of the feces were analyzed. Second, the liver transcriptomes of PBC patients (n = 7) and normal individuals (n = 7) were analyzed. Third, the liver transcriptomes of patients with other liver diseases were collected from online databases and compared with our human and mouse data. Our results showed that PBC-FMT increased the serum ALP concentration, total bile acid content, liver injury and number of disease-related pathways enriched with upregulated liver genes in pseudo germ-free mice and increased the serum glycylproline dipeptidyl aminopeptidase level and liver damage in a 2OA-BSA–induced PBC model. The gut microbiota and metabolome differed between PBC-FMT and HC-FMT mice and reflected those of their donors. PBC-FMT tended to upregulate hepatic immune and signal transduction pathways but downregulate metabolic pathways, as in some PBC patients. The hematopoietic cell lineage, Toll-like receptor, and PPAR signaling pathway were not affected in patients with alcoholic hepatitis, HBV, HCV, HCV cirrhosis, or NASH, indicating their potential roles in the gut microbiota affecting PBC. In conclusion, the altered gut microbiota of PBC patients plays an important role in the occurrence and progression of PBC. The improvement of the gut microbiota is worthy of in-depth research and promotion as a critical aspect of PBC prevention and treatment.