Signals (Jul 2021)

Robustness and Sensitivity Tuning of the Kalman Filter for Speech Enhancement

  • Sujan Kumar Roy,
  • Kuldip K. Paliwal

DOI
https://doi.org/10.3390/signals2030027
Journal volume & issue
Vol. 2, no. 3
pp. 434 – 455

Abstract

Read online

Inaccurate estimates of the linear prediction coefficient (LPC) and noise variance introduce bias in Kalman filter (KF) gain and degrade speech enhancement performance. The existing methods propose a tuning of the biased Kalman gain, particularly in stationary noise conditions. This paper introduces a tuning of the KF gain for speech enhancement in real-life noise conditions. First, we estimate noise from each noisy speech frame using a speech presence probability (SPP) method to compute the noise variance. Then, we construct a whitening filter (with its coefficients computed from the estimated noise) to pre-whiten each noisy speech frame prior to computing the speech LPC parameters. We then construct the KF with the estimated parameters, where the robustness metric offsets the bias in KF gain during speech absence of noisy speech to that of the sensitivity metric during speech presence to achieve better noise reduction. The noise variance and the speech model parameters are adopted as a speech activity detector. The reduced-biased Kalman gain enables the KF to minimize the noise effect significantly, yielding the enhanced speech. Objective and subjective scores on the NOIZEUS corpus demonstrate that the enhanced speech produced by the proposed method exhibits higher quality and intelligibility than some benchmark methods.

Keywords