JPhys Materials (Jan 2024)
Molten glass-mediated conditional CVD growth of MoS2 monolayers and effect of surface treatment on their optical properties
Abstract
In the rapidly developing field of optoelectronics, the utilization of transition-metal dichalcogenides with adjustable band gaps holds great promise. MoS _2 , in particular, has garnered considerable attention owing to its versatility. However, a persistent challenge is to establish a simple, reliable and scalable method for large-scale synthesis of continuous monolayer films. In this study, we report the growth of continuous large-area monolayer MoS _2 films using a glass-assisted chemical vapor deposition (CVD) process. High-quality monolayer films were achieved by precisely controlling carrier gas flow and sulfur vaporization with a customized CVD system. Additionally, we explored the impact of chemical treatment using lithium bistrifluoromethylsulfonylamine (Li-TFSI) salt on the optical properties of monolayer MoS _2 crystals. To investigate the evolution of excitonic characteristics, we conditionally grew monolayer MoS _2 flakes by controlling sulfur evaporation. We reported two scenarios on MoS _2 films and flakes based on substrate-related strain and defect density. Our findings revealed that high-quality monolayer MoS _2 films exhibited lower treatment efficiency due to substrate-induced surface strain. whereas defective monolayer MoS _2 flakes demonstrated a higher treatment sensitivity due to the p-doping effect. The Li-TFSI-induced changes in exciton density were elucidated through photoluminescence, Raman, and x-ray photoelectron spectroscopy results. Furthermore, we demonstrated treatment-related healing in flakes under variable laser excitation power. The advancements highlighted in our study carry significant implications for the scalable fabrication of diverse optoelectronic devices, potentially paving the way for widespread real-world applications.
Keywords