Journal of Materials Research and Technology (Nov 2024)

Evaluation of the corrosion and oxidation resistance of NiCoCrAlY cladding on CMSX-4 by laser cladding

  • Dariush Beiranvandi,
  • Reza Shoja Razavi,
  • Alireza Mirak,
  • Mohammad Reza Borhani,
  • Hamed Naderi Samani,
  • Fareed Kermani

Journal volume & issue
Vol. 33
pp. 4875 – 4883

Abstract

Read online

This study uses laser cladding to investigate the hot corrosion and oxidation behavior of CMSX-4 claddes with NiCoCrAlY powder. High-temperature oxidation tests were conducted at 1050°c for 50, 100, 150, and 200 h on 4 samples, while 6 samples underwent hot corrosion testing at 850°c for 6 h. The innovative application of laser cladding enables the creation of a γ′ and β interdendritic phase microstructure. High-temperature oxidation tests reveal a growth rate of 0.05 μm/h in oxide layer thickness between 50 and 200 h, accompanied by a surface weight increase rate of approximately 0.8 mg/cm2.h. The oxide layer's regeneration, continuity, and density are observed at 200 h, highlighting the innovative potential of this technique. Fracture oxidation is observed at 150 h in some TGO layer regions, but at 200 h of oxidation, the TGO layer's regeneration, continuity, and dense TGO was observed at the cladding interface. The TGO forms at 1050°c consist of Al2O3, Cr2O3, and CoO oxides, with Al2O3 as the main oxide phase. The study's findings demonstrate the ability of laser cladding to enhance the thermal protection of CMSX-4, showcasing a promising innovation in the field.

Keywords