Науковий вісник НЛТУ України (Apr 2019)

Математична модель визначення температурних режимів у біпластині, зумовлених точковим джерелом тепла

  • V. I. Havrysh,
  • O. S. Korol,
  • O. M. Ukhanska,
  • I. G. Kozak,
  • O. V. Kuspysh

DOI
https://doi.org/10.15421/40290322
Journal volume & issue
Vol. 29, no. 3
pp. 104 – 107

Abstract

Read online

Розроблено математичну модель визначення температурних режимів у ізотропній двошаровій пластині, яка нагрівається точковим джерелом тепла, зосередженим на поверхнях спряження шарів. Для цього з використанням теорії узагальнених функцій коефіцієнт теплопровідності матеріалів шарів пластини зображено як єдине ціле для всієї системи. З огляду на це, замість двох рівнянь теплопровідності для кожного із шарів пластини та умов ідеального теплового контакту, між ними отримано одне рівняння теплопровідності в узагальнених похідних із сингулярними коефіцієнтами. Для розв'язування крайової задачі теплопровідності, що містить це рівняння та крайові умови на межових поверхнях пластини, використано інтегральне перетворення Фур'є, внаслідок чого отримано аналітичний розв'язок задачі в зображеннях. До цього розв'язку застосовано обернене інтегральне перетворення Фур'є, яке дало змогу отримати остаточний аналітичний розв'язок вихідної задачі. Отриманий аналітичний розв'язок подано у вигляді невласного збіжного інтегралу. За методом Сімпсона отримано числові значення цього інтегралу з певною точністю для заданих значень товщини шарів, просторових координат, питомої потужності точкового джерела тепла і коефіцієнта теплопровідності конструкційних матеріалів пластини. Матеріалом першого шару пластини є мідь, а другого – алюміній. Для визначення числових значень температури в наведеній конструкції, а також аналізу температурних режимів, що виникають через нагрівання точковим джерелом тепла, зосередженим на поверхнях спряження шарів пластини, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, що відображають поведінку кривих, побудованих із використанням числових значень розподілу температури залежно від просторових координат. Отримані числові значення температури свідчать про відповідність розробленої математичної моделі аналізу температурних режимів у двошаровій пластині з точковим джерелом тепла, зосередженим на поверхнях спряження її шарів, реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду неоднорідні середовища щодо їх термостійкості. Як наслідок, можливо її підвищити і цим самим захистити від перегрівання, яке може спричинити руйнування як окремих елементів, так і всієї конструкції загалом.

Keywords