Annales Geophysicae (Sep 2020)

Entangled dynamos and Joule heating in the Earth's ionosphere

  • S. C. Buchert

DOI
https://doi.org/10.5194/angeo-38-1019-2020
Journal volume & issue
Vol. 38
pp. 1019 – 1030

Abstract

Read online

The Earth's neutral atmosphere is the driver of the well-known solar quiet (Sq) and other magnetic variations observed for more than 100 years. Yet the understanding of how the neutral wind can accomplish a dynamo effect has been incomplete. A new viable model is presented where a dynamo effect is obtained only in the case of winds perpendicular to the magnetic field B that do not map along B. Winds where u×B is constant have no effect. We identify Sq as being driven by wind differences at magnetically conjugate points and not by a neutral wind per se. The view of two different but entangled dynamos is favoured, with some conceptual analogy to quantum mechanical states. Because of the large preponderance of the neutral gas mass over the ionized component in the Earth's ionosphere, the dominant effect of the plasma adjusting to the winds is Joule heating. The amount of global Joule heating power from Sq is estimated, with uncertainties, to be much lower than Joule heating from ionosphere–magnetosphere coupling at high latitudes in periods of strong geomagnetic activity. However, on average both contributions could be relatively comparable. The global contribution of heating by ionizing solar radiation in the same height range should be 2–3 orders of magnitude larger.