Molecular Therapy: Nucleic Acids (Sep 2023)
Mini-PE, a prime editor with compact Cas9 and truncated reverse transcriptase
- Ting Lan,
- Huangyao Chen,
- Chengcheng Tang,
- Yuhui Wei,
- Yang Liu,
- Jizeng Zhou,
- Zhenpeng Zhuang,
- Quanjun Zhang,
- Min Chen,
- Xiaoqing Zhou,
- Yue Chi,
- Jinling Wang,
- Yu He,
- Liangxue Lai,
- Qingjian Zou
Affiliations
- Ting Lan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Wuyi University, Jiangmen 529020, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Huangyao Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Wuyi University, Jiangmen 529020, China; University of the Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Chengcheng Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Wuyi University, Jiangmen 529020, China
- Yuhui Wei
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Yang Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Jizeng Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Zhenpeng Zhuang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Wuyi University, Jiangmen 529020, China; University of the Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Quanjun Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Wuyi University, Jiangmen 529020, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Min Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Wuyi University, Jiangmen 529020, China
- Xiaoqing Zhou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Wuyi University, Jiangmen 529020, China
- Yue Chi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Wuyi University, Jiangmen 529020, China
- Jinling Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Wuyi University, Jiangmen 529020, China
- Yu He
- National Drug Clinical Trial Institution, Jiangmen Central Hospital, Jiangmen, Guangdong 529000, China
- Liangxue Lai
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Wuyi University, Jiangmen 529020, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Corresponding author: Liangxue Lai, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Wuyi University, Jiangmen 529020, China; Corresponding author: Qingjian Zou, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China.
- Journal volume & issue
-
Vol. 33
pp. 890 – 897
Abstract
Prime editor (PE) is a versatile genome editing tool that does not need extra DNA donors or inducing double-strand breaks. However, in vivo implementation of PE remains a challenge because of its oversized composition. In this study, we screened out the smallest truncated Moloney murine leukemia virus (MMLV) reverse transcriptase (RT) with the F155Y mutation to keep gene editing efficiency. We discovered the most efficient gene editing variants of MMLV RT with the smallest size. After optimization of the pegRNAs and incorporation with nick sgRNAs, the mini-PE delivered up to 10% precise editing at target sites in human and mouse cells. It also edited the mouse Hsf1 gene in the mouse retina precisely after delivery with adeno-associated viruses (AAVs), although the editing efficiency was lower than 1%. We will focus on improving the editing efficiency of mini-PE and exploiting its therapeutic potential against human genetic diseases.