Scientific Reports (Oct 2022)

Synergetic synchronized oscillation by distributed neural integrators to induce dynamic equilibrium in energy dissipation systems

  • Mitsuhiro Hayashibe,
  • Shingo Shimoda

DOI
https://doi.org/10.1038/s41598-022-21261-w
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 9

Abstract

Read online

Abstract The synchronization phenomenon is common to many natural mechanical systems. Joint friction and damping in humans and animals are associated with energy dissipation. A coupled oscillator model is conventionally used to manage multiple joint torque generations to form a limit cycle in an energy dissipation system. The coupling term design and the frequency and phase settings become issues when selecting the oscillator model. The relative coupling relationship between oscillators needs to be predefined for unknown dynamics systems, which is quite challenging problem. We present a simple distributed neural integrators method to induce the limit cycle in unknown energy dissipation systems without using a coupled oscillator. The results demonstrate that synergetic synchronized oscillation could be produced that adapts to different physical environments. Finding the balanced energy injection by neural inputs to form dynamic equilibrium is not a trivial problem, when the dynamics information is not priorly known. The proposed method realized self-organized pattern generation to induce the dynamic equilibrium for different mechanical systems. The oscillation was managed without using the explicit phase or frequency knowledge. However, phase, frequency, and amplitude modulation emerged to form an efficient synchronized limit cycle. This type of distributed neural integrator can be used as a source for regulating multi-joint coordination to induce synergetic oscillations in natural mechanical systems.