Materials for Quantum Technology (Jan 2023)

Quantum information diode based on a magnonic crystal

  • Rohit K Shukla,
  • Levan Chotorlishvili,
  • Vipin Vijayan,
  • Harshit Verma,
  • Arthur Ernst,
  • Stuart S P Parkin,
  • Sunil K Mishra

DOI
https://doi.org/10.1088/2633-4356/ace603
Journal volume & issue
Vol. 3, no. 3
p. 035003

Abstract

Read online

Exploiting the effect of nonreciprocal magnons in a system with no inversion symmetry, we propose a concept of a quantum information diode (QID), i.e. a device rectifying the amount of quantum information transmitted in the opposite directions. We control the asymmetric left and right quantum information currents through an applied external electric field and quantify it through the left and right out-of-time-ordered correlation. To enhance the efficiency of the QID, we utilize a magnonic crystal. We excite magnons of different frequencies and let them propagate in opposite directions. Nonreciprocal magnons propagating in opposite directions have different dispersion relations. Magnons propagating in one direction match resonant conditions and scatter on gate magnons. Therefore, magnon flux in one direction is damped in the magnonic crystal leading to an asymmetric transport of quantum information in the QID. A QID can be fabricated from an yttrium iron garnet film. This is an experimentally feasible concept and implies certain conditions: low temperature and small deviation from the equilibrium to exclude effects of phonons and magnon interactions. We show that rectification of the flaw of quantum information can be controlled efficiently by an external electric field and magnetoelectric effects.

Keywords